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ABSTRACT   

While doing optical study in an instrument similar to the interferometers dedicated to the Very Large Telescope (VLT), 
we have to take care of the pupil and focus conjugations. Modules with artificial sources are designed to simulate the 
stellar beams, in terms of collimation and pupil location. They constitute alignment and calibration tools. In this paper, 
we present such a module in which the pupil mask is not located in a collimated beam thus introducing Fresnel 
diffraction. We study the instrumental contrast taking into account the spatial coherence of the source, and the pupil 
diffraction. The considered example is MATISSE, but this study can apply to any other instrument concerned with 
Fresnel diffraction.   
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1. INTRODUCTION  
The Multi AperTure mid-Infrared SpectroScopic Experiment1 (MATISSE) is designed to be a spectro-interferometer 
combining the beams of up to four telescopes UTs/ATs of the European Southern Observatory VLT. Covering the L, M, 
and N bands, this second generation instrument has the scientific objectives to study Active Galactic Nuclei, the 
formation and evolution of planetary systems, the birth of massive stars as well as the observation of the high-contrast 
environment of evolved stars. The optics of MATISSE is divided in three main sub-systems: the Warm Optics (WOP) 
and two Cold Optics (COB) benches for the L&M and N bands2. To simulate the VLT beams, the MATISSE instrument 
can be lit by artificial sources (ARC). This module delivers four visible and IR collimated beams in the purpose of 
alignment, maintenance and calibration operations. 

The purpose of this paper is to study the spatial coherence of the ARC. In order to optimize the space dedicated to this 
module, the optical configuration is such that the pupil mask is not in a collimated beam. In the frame of the instrument 
performance study3, we were then concerned by the diffraction of the pupil mask, and its effect on the instrumental 
contrast measured in the Point Spread Function (PSF) plane. In Section 2 of this paper, we present the ARC optical 
configuration. Section 3 shows the Fresnel formalism4 used to estimate the ARC performance in terms of instrumental 
fringe contrast. Section 4 is a study of a defocus effect, i.e. the contrast evolution if the observation is performed 
away from the theoretical PSF plane. The study is performed at the lowest wavelength of MATISSE, i.e. 3 µm. 

 

2. ARC OPTICAL CONFIGURATION 
The main function of the ARC module is to provide four beams at the entrance of the WOP to simulate the VLT beams 
to perform MATISSE alignment and calibration. The source is either a laser diode or an infrared ceramic source. 
Figure 1 shows the optical scheme of the ARC, from the pinhole source to the beam division.   

The numerical values of the different parameters are the following: 

- The power optics has a focal length f1 = 300 mm. Its position defines the origin of the z-axis. We note (x1, y1) the 
coordinates of a point in this P1-plane.  

- The extended source, a uniform, spatially incoherent disk of diameter ρ = 25 µm, is located at a distance z1 = 2 f1 
= 600 mm in front of the previous optics. 



 
 

 
 

- We observe the figure of diffraction in an x-y (P) plane located at the distance z3 = z1 of the power optics. 
Without the PMA-mask it would be the image of the source. 

- The PMA-mask is located in the P2-plane at the distance z2 = 499 mm of the power optics, and at the distance 
z = 101 mm of the P-plane containing the figure of diffraction. We note (x2, y2) the coordinates of a point in this 
plane. The pupil diameter d is 3.1 mm, and their separation b is 5 mm. 

 

                          
Figure 1. Left: optical scheme of the artificial source (ARC) module of MATISSE, from the pinhole to the 4 beam division. 

Right: simple view of the optical configuration of the ARC. The source, of diameter ρ, is located at a distance z1 of a 
P1-plane containing the power optics of focal length f1. We observe the (Point Spread Function) PSF in a P-plane 
located at a distance z3. The pupil mask PMA is at a distance z of the PSF. The pupil separation is b, and their diameter 
is d. A second optics, with focal length f2, forms the collimated beams with a B-separation, and allows controlling the 
fringe pattern in the final instrument focal plane. 

 

3. SPATIAL COHERENCE - CONTRAST EVALUATION 
Let us consider an off-axis point-like source. Its position is described by the angular directions α and β as seen from the 
origin. We note θ  = (α, β). A diverging spherical wave is generated from this point. To describe the wave propagation 
along the z-direction, we use the Fresnel formalism5 which is a convolution product * between the complex amplitude of 
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By developing the convolution product, we recognize the Fourier Transform (FT) of ⎟
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Ψz2- ( )2ρ  represents a spherical wave in the P2-plane having propagated a distance of z1+ z2, and converging at (-z3α, -z3β, 
z3 - z2) after the PMA.  

The transmission coefficient pup ( )2ρ  of the PMA-mask is described by the following expression: 
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Π being the pupil function and δ the Dirac function. The parameters b and d are respectively the vector between the two 
PMA pupils, and their diameter.  

Taking into account the propagation through the distance z = z3 - z2, we find the expression of the wave amplitude Ψ( ρ ) 

in the P-plane, with ρ  = (x, y): 
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Finally, the intensity of the diffraction figure in the P-plane is proportional to: 
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where J1 is the Bessel function of the first kind and J1c(q)=J1(q)/q. 



 
 

 
 

Let us remember that I ( )ρ  is the intensity formed by a single point source. It describes a PSF modulated by interference 
fringes with a contrast equal to 1. The Airy disk size is 2.44λ(z3−z2)/d. The αz3 and βz3 terms represent the PSF and 
fringe shift depending on the point source position. Let us now consider the extended source of surface S as a set of 
incoherent points, each one emitting a spherical wave. The resulting PSF in the P-plane is then the sum of the intensities 
of each wave. In the hypothesis the effect of the displacement αz3 is negligible, it can be approximated by: 
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with ρ the source diameter, and z = z3 – z2. This approximation is valid if we consider the maximum value of 

αz3 = z3 1zρ # 25 µm, and the J1C² size of 2.44 dzλ # 250 µm. The fringe contrast is then simply ⎟
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is the FT of the pupil function. The result is identical to that obtained when the pupil mask is illuminated with a 
collimated beam in a configuration similar to that shown in Figure 2. The mask must present a size homothetic to the 
initial one such that the pupil diameter d’ is dz3/z, and the separation b’ is bz3/z. 

 
 

 

 

Figure 2. Equivalent optical configuration of the ARC. The PMA, of dimensions d’ and b’, is located in a collimated beam. 

 
Considering the parameter values of MATISSE (see Section 2), we can plot the contrast versus ρ for a given z, and the 
contrast versus z for a given ρ (Figure 3). With ρ = 25 µm and z = 101 mm, the expected instrumental contrast, 
calculated without the approximation of eq. 8, is 0.76 at the wavelength of 3 µm. Around z = 101 mm, an error Δz of 
±2 mm on the PMA-mask positioning introduces less than 1% change in the contrast value. 
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Figure 3. Top left: instrumental contrast versus the source diameter ρ with z = 101 mm (MATISSE configuration) at 

λ = 3 µm. The PSF shift is here neglected. Top right: instrumental contrast versus the distance z between the mask and 
the PSF plane with ρ  = 25 µm (MATISSE source) at λ = 3 µm. Bottom: simulated PSFs for four values of ρ with 
z = 101 mm. The contrast obtained from the simulations is 1 for ρ  = 2 µm, 0.76 for ρ  = 25 µm, 0.17 for ρ  = 60 µm, 
and 0.15 with a contrast inversion for ρ = 100 µm. 
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4. DEFOCUS EFFECT 
We study the effect if we observe in a plane located at a distance ε from the theoretical PSF P-plane. To simplify, let us 
consider z1 = z3 as in the MATISSE instrument. In this case, the wave propagates on a distance z = z1 - z2 -ε from the 
PMA-mask up to the plane of observation. The amplitude Ψ ( )ρ  is then the amplitude at the exit of the PMA convolved 
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The expression of Ψ ( )ρ  can be simplified for small value of ε.  

To lighten the expression in the following, let’s call '
0ψ  the term multiplying the integral. The Taylor series at first order 

of Ψ ( )ρ  results in: 
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For small values of ε, the first term is equivalent to the amplitude for ε = 0. Let us call it Ψε=0 ( )ρ .  
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We are interested in the contrast loss due to ε. The intensity modulation being defined in the x-direction, let us consider 
v = 0 (y = 0). To simplify also the expression, we consider β = 0 such that the position of the point-like source is defined 



 
 

 
 

by the angle α.  We checked the analytical results below with computer algebra, using the MAPLE software from 
Maplesoft society, Canada. 

 

To calculate the term FTu,v(x2².f(x2,y2)), we used the mathematical derivatives concerning the Bessel functions of the nth 
kind, and considering a constant m in the argument: 
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Considering the term FTu,v(y2².f(x2,y2)), we also used the following derivative: 
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The resulting amplitudeΨ(u,0) is then: 
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The resulting intensity is given by: 

I(x,0) = 
4

0

z²4

²

λ

ψ
 δ ( )1zx α+    ∗    

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

z
bx2cos1

z
dxJ²d

2

c1 λ
π

λ
ππ  

( )

2

21 zzz4
d

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
λ

ε

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

z
bxcos

z
dxJ

x
zd3 2

2

λ
π

λ
πλ

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛+

z
bxsin

z
dxJ

x
zbd2 2 λ

π
λ

πλπ  

 ( )
⎪
⎭

⎪
⎬

⎫

⎥
⎥

⎦

⎤
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛++−

2

0

2

1

2
2

z
bxcos

z
dxJ

x
zd

z
bxcos

z
dxJ

x
z

x
z2b²d

λ
π

λ
πλ

λ
π

λ
πλλ

π
π    (11) 

with z = z1 - z2 - ε . 
 

This expression is valid for 
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( )zzz
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<< 1 (eq. 9), i.e. for ε  << 1 mm considering that ( )²y²x 22 + ≤ d² ~ 2.4µm². 

Figure 4 shows the effect of ε on I(x,0) of eq. 11: the minima are not zero any more, the interfringe is changed. To 
enhance the illustration, we plotted the intensity for ε = 1 mm. The resulting contrast degradation factor is better than 
0.96 for values of ε up to 0.5 mm.  
 



 
 

 
 

 
 

Figure 4. Normalized Intensity I(x, 0), eq. 11, for ε = 0 mm (blue full line) and for ε = 1 mm (red dashed line). On the right 
figure, data are also plotted as logarithmic scale for the y-axis. 

 
To have access to the contrast value versus ε without the approximations considered to find eq. 11, we performed the 
direct computation of eq. 9. We validated the results by comparison with those of Section 3 for which ε = 0, and finally 
found the contrast degradation factor versus ε shown on Figure 5. The contrast degradation factor is 0.95 for ε  = 1 mm, 
and 0.40 for ε  = 3 mm. The associated simulated PSFs are also shown.  
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Figure 5. Top: degradation factor of the instrumental contrast versus the error ε in the observation plane of the PSF. The 

computation is performed directly from eq. 9. The source diameter ρ is 25 µm and λ = 3 µm. Bottom: simulated PSFs 
for four values of ε. The contrast degradation factor is 1 for ε  = 0.2 mm, 0.98 for ε  = 0.6 mm, 0.95 for ε  = 1 mm, and 
0.40 for ε  = 3 mm. 

 

5. CONCLUSION 
We studied the spatial coherence of the artificial source module of MATISSE considering the pupil mask is not in a 
collimated beam. Using Fresnel formalism, we showed the PSF is the same than that obtained in an optical configuration 
with a pupil mask in a collimated beam. Considering the MATISSE parameters, the instrumental contrast delivered by 
this module is expected to be 0.76 at the wavelength of 3 µm. We then estimated that the contrast is degraded by a factor 
of 95% when the PSF is recorded in a plane located at a distance of 1 mm from the theoretical PSF plane. This allows 
estimating the specification of defocus for the final MATISSE detector. 
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