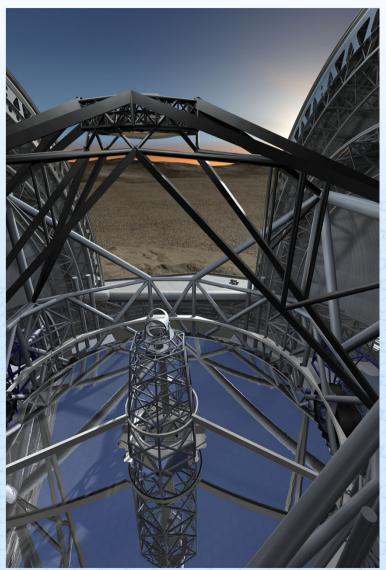
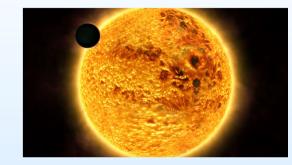
The European Extremely Large Telescope and its AO systems


Thierry Fusco ONERA – LAM thierry.fusco@onera.fr

based on slides kindly provided by ESO Special thanks to N. Hubin and S. Ramsay

The E-ELT

- 40-m class telescope: largest opticalinfrared telescope in the world.
- Segmented primary mirror.
- Active optics to maintain collimation and mirror figure.
- Adaptive optics assisted telescope.
- Diffraction limited performance.
- Wide field of view: 10 arcmin.
- Mid-latitude site (Armazones in Chile).
- Fast instrument changes.
- VLT level of efficiency in operations.


The Science

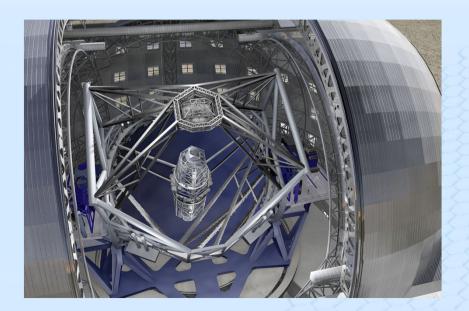
- Contemporary science:
 - Exoplanets: radial velocity detections, direct imaging, transit spectroscopy, proto-planetary disks
 - Fundamental physics: GR in the strong field limit, variation of fundamental constants, expansion history of the Universe
 - Resolved stellar populations: beyond the Local Group
 - The physics of high-redshift galaxies ...and much more!
- Synergies with other top facilities: ALMA JWST
 SST and other survey tolescence

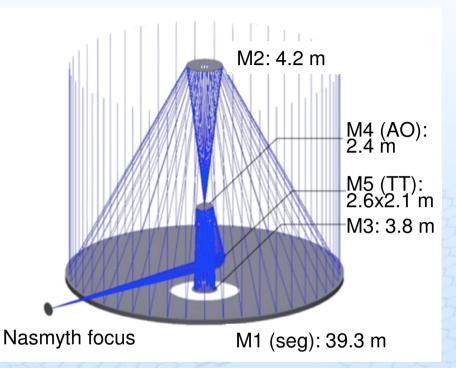
LSST and other survey telescopes SKA

 Discovery potential: Opening new parameter space in terms of spatial resolution and sensitivity

The E-ELT Project

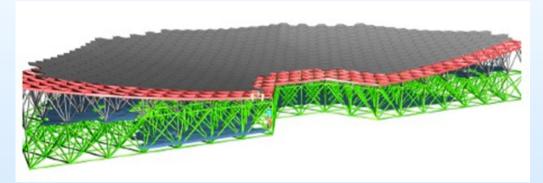
- Top priority of European ground-based astronomy (on Astronet and ESFRI lists).
- Cerro Armazones in Chile selected as the E-ELT site in April 2010.
- Detailed Design Phase completed in 2011. Construction Proposal published in Dec 2011.
- Instrument Roadmap (Nov 2011): 2 first-light instruments + plan for 1st generation.
- Project fully approved in Dec 2012.
- Construction started in 2013.
- Start of operations early next decade.
- Construction cost: 1083 M€ (including first-light instrumentation).

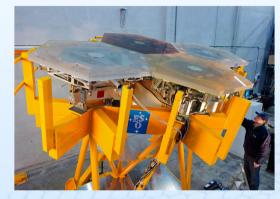


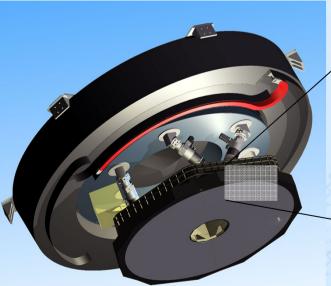


The Telescope

- Nasmyth telescope with a segmented primary mirror.
- Novel 5 mirror design to include adaptive optics in the telescope.
- Classical 3mirror anastigmat + 2 flat fold mirrors (M4, M5).

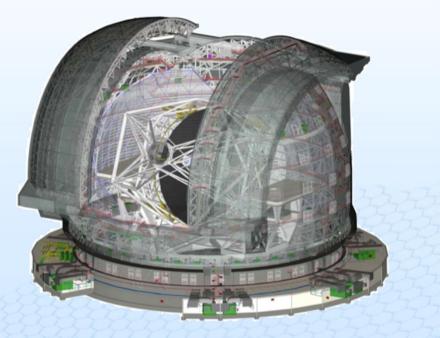


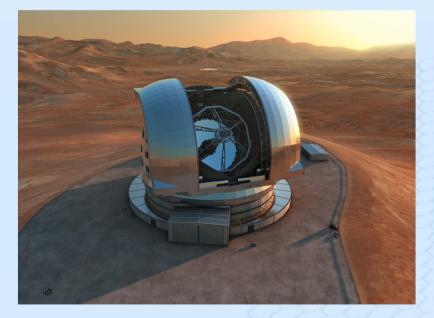

- Two instrument platforms nearly the size of tennis courts can host 3 instruments each + Coudé lab.
- Multiple laser guide stars, launched from the side.
- Nearly 3000 tonnes of moving structure.

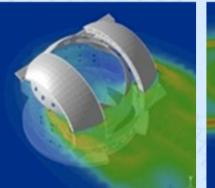

The Mirrors

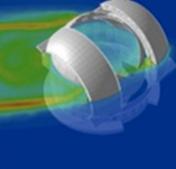
M1: 39.3 m, 798 hexagonal segments of 1.45 m tip-to-tip: 978 m² collecting area

M4: 2.4 m, flat, adaptive 6000 to 8000 actuators

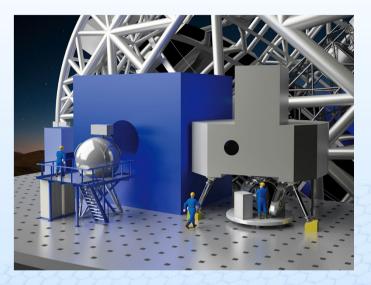

M5: 2.6 x 2.1 m, flat, provides tip-tilt correction




The Dome



- Classical design.
- Diameter = 86 m, height = 74 m.
- ~3000 tonnes of steel.
- Fully air-conditioned and wind shielded.



__ | | | 🐼 | __ ## #- | | | **==** | | | __ | **| |** | **|** | # ##

The Instruments

- The telescope can host eight instruments.
- 2007 2010: eight instrument and two adaptive optics module concept studies were conducted by the community.

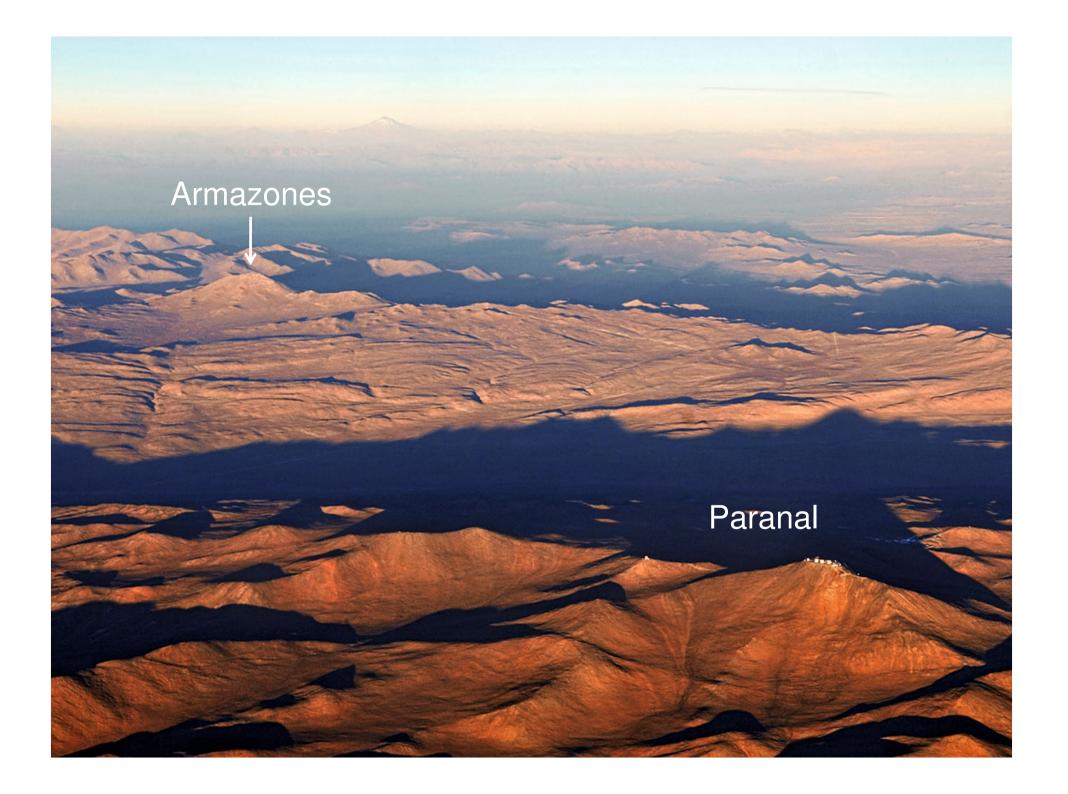
- Instrument Roadmap (2011):
 - Following recommendations by the E-ELT Science Working Group and ESO's Scientific Technical Committee two first-light instruments have been identified: a diffraction-limited near-infrared imager and a single-field near-infrared wide-band integral field spectrograph.
 - The next group (ELT-3, 4 and 5) has been broadly identified as covering the mid-infrared, as well as multi-object and high-resolution spectroscopy.
 - Planet camera and spectrograph on separate track.
 - Flexibility is maintained by including an as yet unspecified instrument.
 - All concept studies remain in the pool of possible instruments.

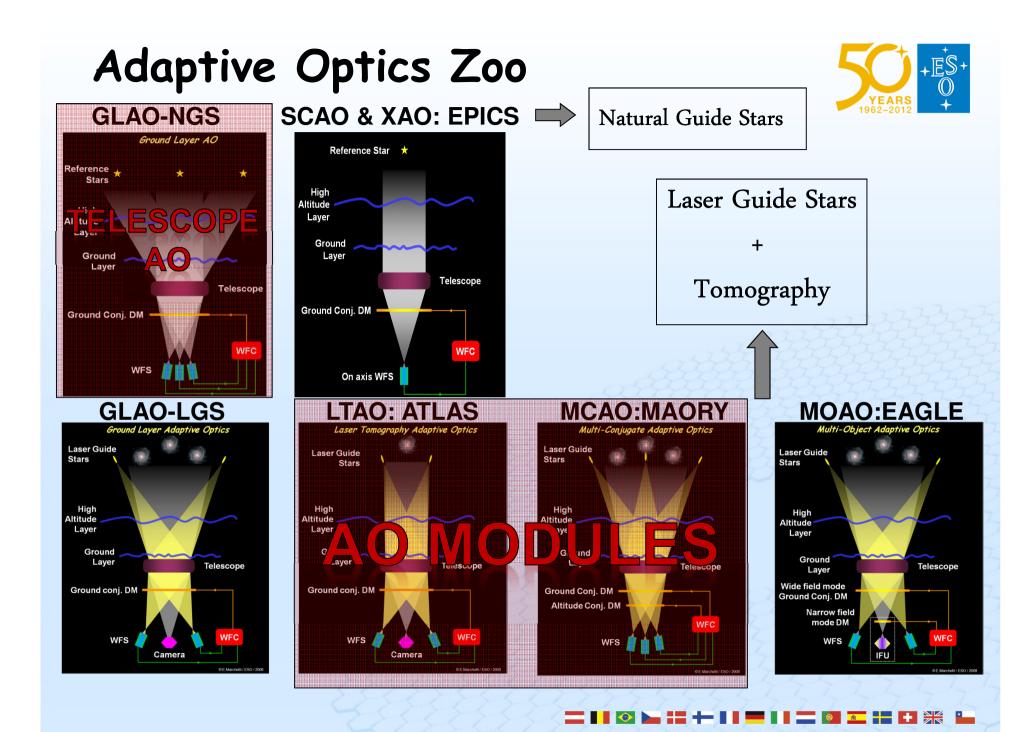
= | | 💿 🛌 := +- | | = = | | = 💷 🚳 🛋 := | + 💥 🕒

Instrument Roadmap

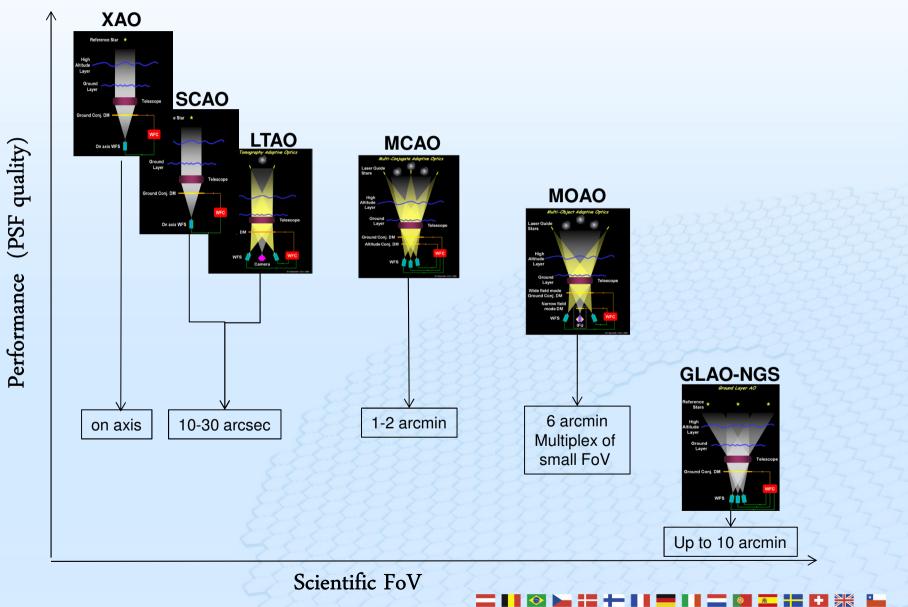
Year	ELT-IFU	ELT- CAM	ELT- MIR	ELT-4 (MOSor HIRES)	ELT-5 (MOSor HIRES	ELT-6	ELT-PCS		
2012	Decide science requirements, AO architecture.		VISIR start on- sky	Developsc requiremen MOS/HIRE	its for		C all for proposals for ETD		
2013			TRL Review	Call for pro M OS/HIRE					
2014									
2015				Selection ELT- MOS/HIRES		Call for proposals			
2016									
2017							TRL check		
2018							TRL check		
2019						Selection	TRL check		
2020							TRL check		
2021							TRL check		
2022 Tel technical first light									
	Pre-studies taking the form of phase A or delta-phase A work and/or ESO-funded Enabling Technology Development (ETD)								
	Decision point								
	Development of Technical Specifications, Statement of Work, Agreement, Instrument Start.								

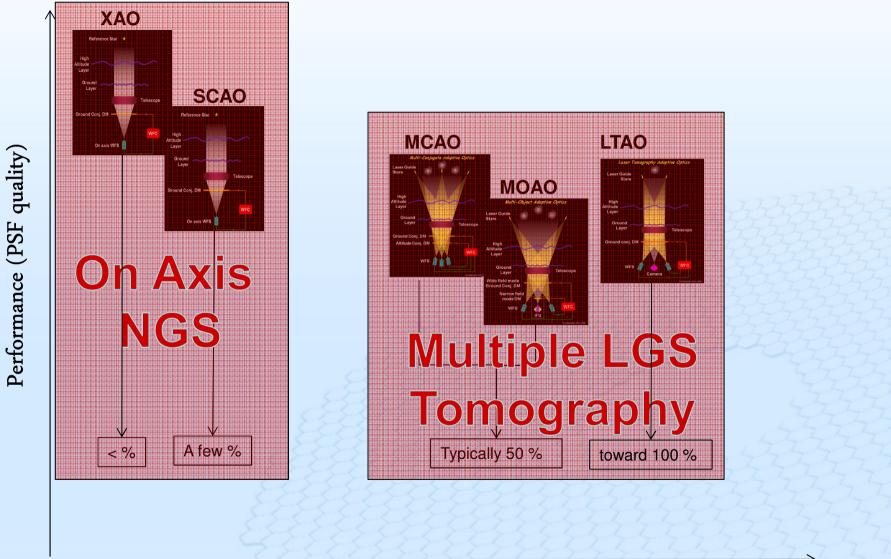
The Site



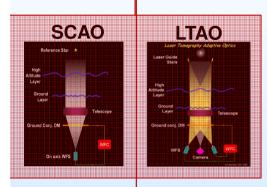

Following an extensive site testing campaign, involving several sites in Chile, Morocco, the Canary Islands, Argentina, Mexico, etc, ESO Council selected Cerro Armazones as the E-ELT site.

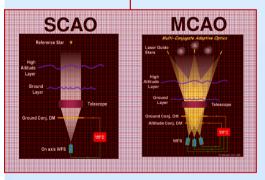
Selection criteria: impact on science, outstanding atmosphere, but also construction and operations logistics (roads, water, electricity, nearby cities, ...).



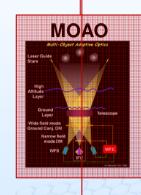

AO systems:perf vs accessible FoV

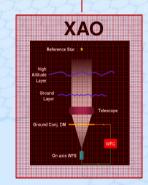
AO systems: perf vs sky coverage





Sky coverage

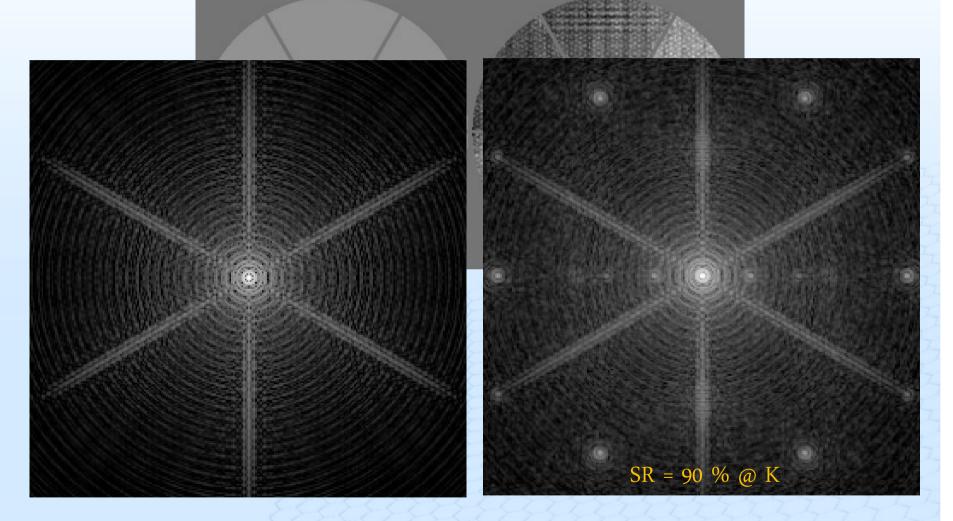

Instrument Roadmap & AO



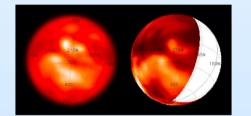
Year	ELT-IFU	ELT- CAM	ELT- MIR	ELT-4 (MOS or HIRES)	ELT-5 (MOS or HIRES	ELT-6	ELT-PCS	
2012	Decide science requirements, AO architecture.		VISIR starton- sky MOS/HIRE		ts for		Call for proposals for ETD	
2013			TRL Review	Call for proposals for MOS/HIRES				
2014								
2015				Selection E MOS/HIRE		Call for proposals		
2016								
2017							TRL check	
2018							TRL check	
2019						Selection	TRL check	
2020							TRL check	
2021							TRL check	
2022 Tel technical first light								
	Pre-studies taking the form of phase A or delta-phase A work and/or ESO-funded Enabling Technology Development (ETD)							
	Decision point							
	Development of Technical Specifications, Statement of Work, Agreement, Instrument Start.							

__ II 💿 ▶ := +- II **=** II **__** II **__** II ↓ ...

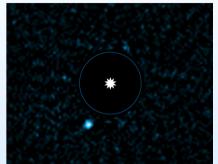
Common key features for all AO systems

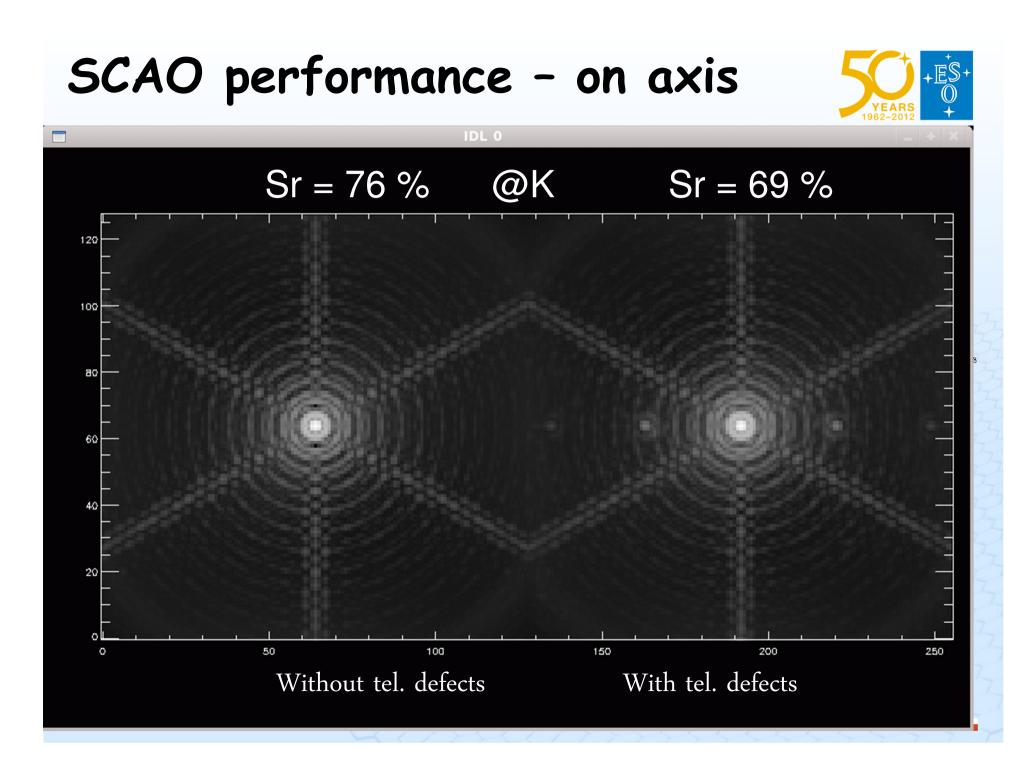


- Telescope residual defects after correction by M4
- Residual windshake
- Control of M4 / M5
- Pupil stabilisation
- Optical axis stabilisation
 - Coronagraphic imaging
 - Astrometry
- Overhead minimization : every second counts !
 - Should be smaller than a few minutes.
 - =>Identification processes rather than on-sky calibration !

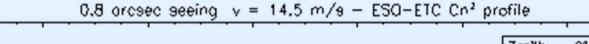

Telescope residual defects

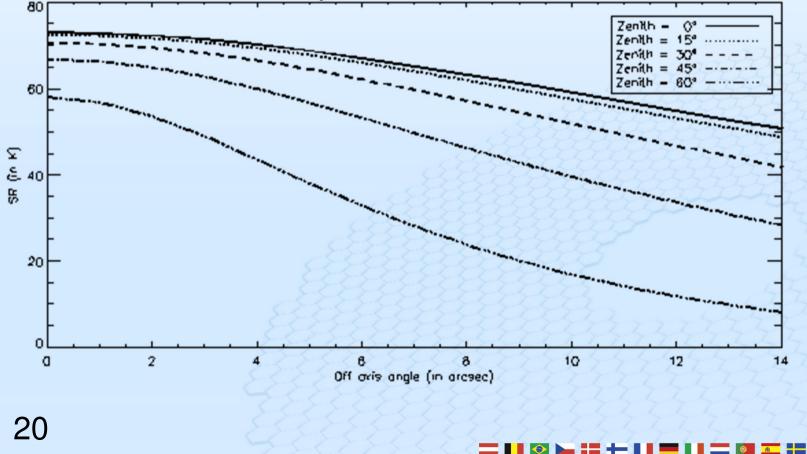
SCAO : Why ?


- Best performance for bright objects
 - Exoplanet characterisation (SPHERE follow up)
 - Solar system observation

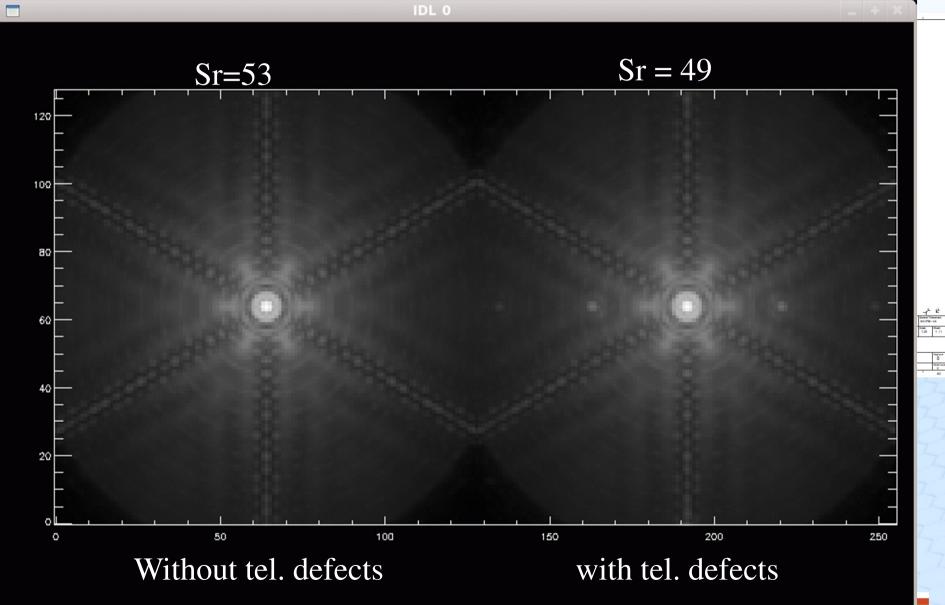

- First year(s) of operation risk mitigation for LTAO & MCAO
 - observe as much objects as we can with a « very decent » image quality
 - acquire as much feedback as possible on the telescope before integrating complex AO system

win-win

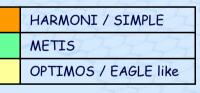

strategy



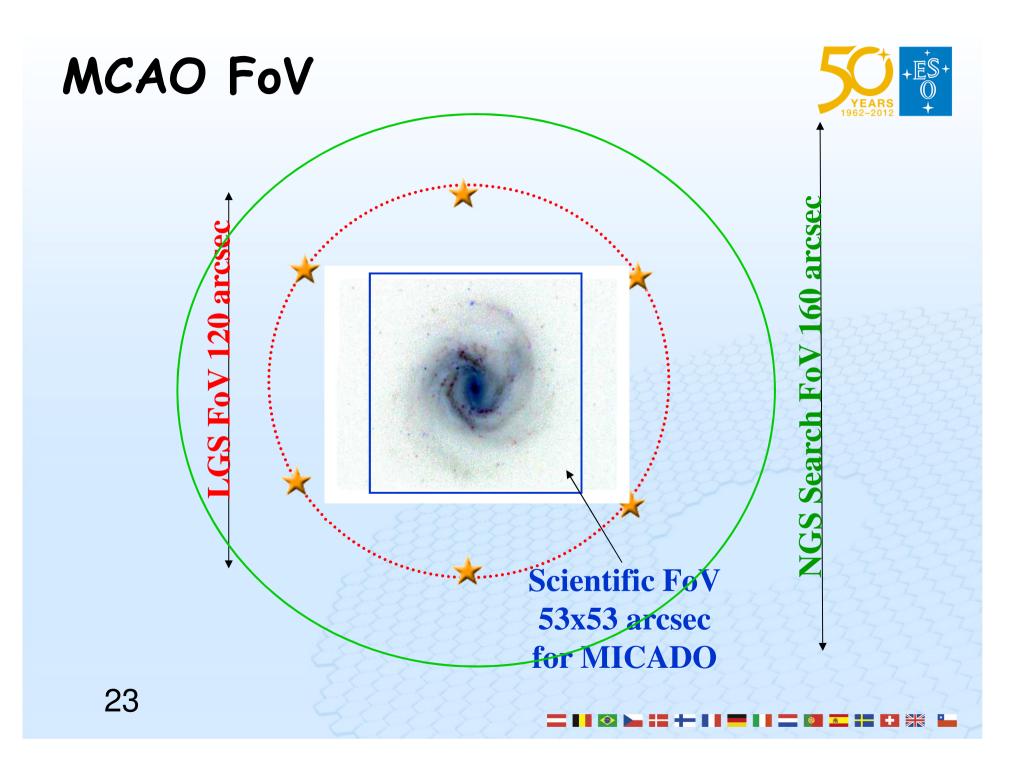
SCAO performance – anisoplanatism 50


Layer nb	1	2	3	4	5	6	7	8	9	10
$C_n^{2}[\%]$	33.5	22.3	11.2	9.0	8.0	5.2	4.5	3.4	1.9	1.1
h [m]	0	600	1200	2500	5000	9000	11500	12800	14500	18500

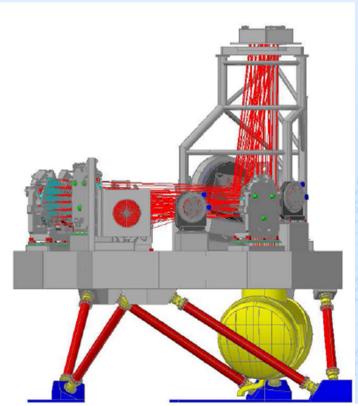
LTAO : toward a 100 % sky coverage

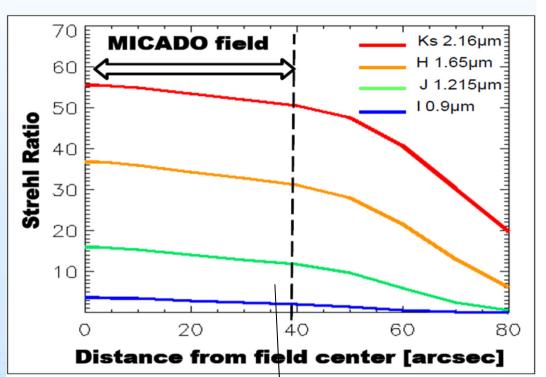


LTAO performance (from ALTAS PhaseA)



NOMINAL CONDITION; Sseeing = 0.8; Zenith = 0° ; $\theta 0 = 2.08^{"}$								
lambda (nm)	900	1250	1650	2200	3500	4800	10500	
Ensquared Energy (%)								
Width 10 mas	10,3	21,1	26,1	26,4	17,8	13,7	3,9	
Width 20 mas	15,1	32,1	42,5	48,5	45,6	37	14,3	
Width 40 mas	18,2	37,8	53,6	63,8	62,8	61	35,1	
Width 60 mas	22,4	40,5	56,3	67,8	75,9	69,1	54,2	
Width 80 mas	23,2	42,4	58,2	70,2	79,8	80,1	63,8	
Width 100 mas	25,6	44,8	59,5	71,7	81,3	84,6	67,5	
Strehl Ratio (%)	5,5	18,8	35,3	52,7	75,6	90,5	96,9	
FWHM (seeing limited) [mas]	646	609	586	546	483	442	357	
FWHM (ATLAS) [mas]	8,2	9	10,1	12,1	17,6	23,7	49,1	
FWHM (Diffraction) [mas]	4,4	6,1	8,1	10,8	17,2	23,6	49,6	


ATLAS sky coverage						
Perf SC (pole						
52 % SR in K	92 %					
40 % SR in K	96%					
35 % SR in K	97%					
13 % SR in K 100 %						


Without telescope error budget to be updated for 39 m

MCAO

- > 6 LGSs side launched
- > 3 NGSs (IR WFSs)
- > 0.6 μm < λ < 2.4 μm</p>
- > S.R. >50% in K over 2'
- Central 1' clear
- > DM conjugated at 4km, 12.7km
- > Two output ports

- Sky coverage Galactic Pole
- No telescope error budget included yet

Minimum fie	% Sky			
2.16 µm	1.65 µm	1.215 µm	0.9 µm	
Ks band	H band	J band	l band	
0.53	0.34	0.14	0.03	39%
0.51	0.32	0.13	0.03	50%
0.41	0.22	0.06	<0.01	80%

15h05-15h20 XA

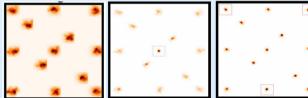
ΧΑΟ

ELT-PCS, orateur : J.-L. Beuzit (IPAG)

14h00-14h20 MOAO

ELT-MOS (MOSAIC/DIORAMAS), orateurs : F. Hammer (GEPI), O. Le Fèvre (LAM)

Key issues (non-exhaustive list)


16h25-16h45

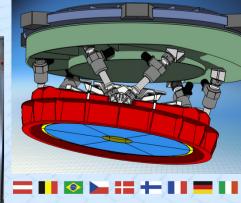
Optique adaptative pour l'E-ELT : état actuel et enjeux, orateur : M. Tallon (CRAL, ASHRA)

LIFT

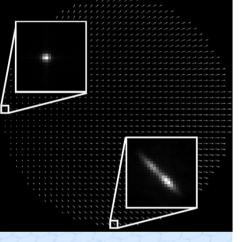
- Concepts

- Multi LGS wavefront sensing
- Tomography
- Very faint NGS wavefront sensing
- Vibrations and windshake

Techno


- Laser
- Detector (VIS ans IR) : large, fast and sensitive
- RTC

Deformable mirror


- Large DM \rightarrow M4 (for all AO systems)
- Medium DM \rightarrow (MCAO)
- Mini DM \rightarrow (MOAO)
- Micro-DM \rightarrow (XAO)

LQG

First Light of the VLT Laser Guide Star

Next steps

- Preliminary design of M4 unit
- Consolidation of MAORY Project plan for next phases
- Pursue technology development for MAORY
- Optical design trade-off incl. 39 m update
- Update Nasmyth platform configuration: telescope metrology-LTAO – HARMONI & METIS
- Update performance estimates/error budgets for the different AO capabilities
- Consolidate interfaces with instruments

Conclusions

- An aggressive AO program is being developed for the VLT
- AO pathfinders for E-ELT are on-going @ VLT, WHT,...
- Major efforts & collaborations to bring key technologies to appropriate TRL
- Facilitating AO community effort to address remaining key AO fundamental issues (calibration, identification, control, tomography, LGS & NGS WFSing, simulation....)
- Preparing for construction of E-ELT AO capabilities
- Setting up Consortium for the AO instrumentation
- The main power of the E-ELT will reside in achieving, with the help of AO, a spatial resolution never achieved at optical/infrared wavelength to this depth before.

THANK YOU FOR YOUR ATTENTION

More information

The science users web pages: <u>www.eso.org/sci/facilities/eelt</u>

The E-ELT Construction Proposal: www.eso.org/sci/facilities/eelt/docs/eelt_constrproposal.pdf

The E-ELT Science Case: www.eso.org/sci/facilities/eelt/science/doc/eelt_sciencecase.pdf

The E-ELT Design Reference Mission: www.eso.org/sci/facilities/eelt/science/doc/drm_report.pdf

The public web pages: www.eso.org/public/telesinstr/eelt.html

Brochures, Posters, etc: www.eso.org/public/products/brochures/

Gallery: <u>www.eso.org/public/images/archive/category/eelt/</u>

An Expanded View of the Universe Science with the European Extremely Large Telescope

