R&D Testbenches In France For High Contrast Imaging In Space

ASHRA/CNES meeting

31st May 2017, Marseille

Raphaël Galicher Maud Langlois Jean-François Sauvage Patrice Martinez Alexis Carlotti

Needs For Astrophysics And Needed Studies

Needs for astrophysics

High contrast levels: ~ 1e-10 contrast Large spectral band: >200nm in visible ; >500nm in NIR

Needed studies

<u>Coronagraphs</u> Chromatism Pupil apodization Small IWA

Segmentation/Obscuration Post-coronographic apodization Adaptative components

<u>Wavefront control</u> Chromatism HOWFS Jitter

Segmentation LOWFS SLM Phase&litude

micro-miroirs

<u>A posteriori speckle calibration</u> Coherence Statistics

Space TRL

May, 31th 2017

Free @ Ipag bench

Objective

Measurement and control of Fresnel effects using Electric Field Conjugation (EFC) Coronagraph characterization

Main components

- Polychromatic (Nir)
- Focal phase mask + pupil apodization
- 32X32 BMC (at ESO today)

Not usable since 2015

Activities

- Measurement via EFC (tested @ Sphere : gain of 12 on internal source and 5 on-sky)
- Control loop of HOWFS

Perspectives

- 2017: characterization of Shark/LBT coronagraphs (throughput, defects, PSF properties)
- 2018: micro-mirror matrices (amplitude correction, pupil apodization) + LO DM

Vérinaud et al. 2011 ; Kasper&Vérinaud, In prep (?)

XAO-CRAL bench

XAO-CRAL: Objective, Activities & Perspectives

Objective

New concepts for XAO for ELT but possibly useful for space mission.

Main components

- Polychromatic light
- 512x512 SLM
- 12x12 BMC DM
- Atmosphere (phase mask) + telescope simulator (ELT)

Activities

- WFS : Mach-Zehnder interferometer in broadband
- Woofer/tweeter (DM+SLM)

Perspectives

- Control closed-loop (>kHz)
- Spider and segment impact
- Segment co-phasing
- A posteriori speckle calibration (post-processing techniques)

XAO-CRAL results

Loupias et al. 2016

Raphaël Galicher

Mithic @ Lam bench

May, 31th 2017

Raphaël Galicher

Mithic @ Lam: Objectives & Activities

Objective

Space and ground-based telescope: non-linear dark hole, segmentation, LOWFS+HOWFS

Main components

- Monochromatic / Polarized light
- Roddier&Roddier coronagraph + pupil apodization
- Phase mask + Wheel :
 - Atmosphere simulator (XAO residual)
 - Static patterns (segments, LO, HO)
- SLM modelizing a Sphere DM
- WFS : Haso / Coffee / Zelda

Activities

- Non linear dark hole
- Zelda: closed-loop NCPA stabilization
- Zelda: coupling with Coffee
- A posteriori speckle calibration
- Coffee: to prepare on-sky tests
- Low wind effect: validation of WFS procedures

Mithic @ Lam: Results & Perspectives

Results

• "Quantifying telescope phase discontinuities external to AO-systems by use of Phase Diversity and Focal Plane Sharpening"

• Characterisation of a turbulent module for the MITHIC high-contrast imaging testbed, *Vigan et al. 2016*

Perspectives

- Rough cover on imaging path (mainly for light pollution)
- Control / command : development of an IHM for controlling easily all devices
- Segmented mirror : PTT111 for basic tests

Speed @ Lagrange

Speed *@* **Lagrange: Objectives & Activities**

Objective

Amplitude correction with segmented pupil Small IWA coronagraphs

Main components

- NIR + VIS
- E-ELT like pupil
- PIAAMC (IWA = 1L/D)
- Detectors
 - Nir: Rasoir Eso
 - Vis: Apogee
- IRIS AO PTT489 (163 segments)
- 2 BMC Kilo-C DMs
- 1 Tip/Tilt (PI)

Activities

- 2 separated testbeds currently in use (cophasing & Fresnel/DMs calibration) SCC-PS, Zelda-PS
- Sept 2017 early 2018 : Vis path alignment
- mid-2018 ... : Nir path alignment

Speed *@* **Lagrange: BMC & Humidity**

ISO 7 room humidity : 55 % +/-10 % > DM requirements = 40 % \rightarrow dedicated system for humidity < 20-30 %

Speed *@* **Lagrange: Results & Perspectives**

Results

OI#1 : SCC-PS (w/Lesia) & Zelda-PS (w/Lam) Janin-Potiron et al. 2016/2017 OI#9 & #10: Beaulieu et al. 2017 OI#5 & #8: Cnes R&T (small IWA coronagraph w/ Lesia & O. Guyon)

Perspectives

Objectifs	OI #1	OI #2	OI #3	OI #4	OI #5	OI #6	OI#7	OI #8	OI #9	OI #10
Avancement	\checkmark								\checkmark	\checkmark

<u>Tasks</u>

- OI#1 : Development of novel(s) instrument-level phasing technics
- OI#2 : Study segment misalignments propagation error and impact for high-contrast imaging
- OI#3: Development of strategies for fine-phasing from post-AO wavefront measurements
- OI#4 : Phasing systems comparison (zernike-based sensor, APFWS, Phase diversity, novels)
- OI#5 : Development of a PIAACMC reaching 10^{-7} raw contrast at 1 λ /D
- OI#6 : Analysis of missing segments impacts on high-contrast imaging performance
- OI#7: Appraise non-linear solution for wavefront shaping combined with coronagraphy
- OI#8: Study stellar resolution impact with stellar size up to 0.5 mas
- OI#9 : Study of Fresnel effect and thorough understanding in instrumental and contrast design
- OI#10 : In-depth mastering of multi-DMs architecture considering Fresnel/Talbot effects

THD2 @ Lesia

THD2 @ Lesia: Objective & Main components

Objective

Compare high contrast imaging techniques (coronagraphs, WF sensing/control, a posteriori speckle calibration) and optimize their associations

Main components

- Vis: 3 Laser diodes + Supercontinuum source
- Pupil apodization
- Focal plane mask
- LOWF: TT
- HOWF: 32x32 BMC + 34x34 BMC + 12x12 BMC in cascade
- Stable over months with ~10pm accuracy:
 - Cleam room (iso7)
 - 3 covers (temperature, acoustics, turbulence)
 - Motorized alignment
 - Temperature/humidity measurements
 - Control room outside the clean room

12x12

 Tip-Tilt
 32x32

 May, 31th 2017

34x34 Raphaël Galicher

THD2 @ Lesia: Results (1/) **Monochromatic light + 1DM**

640nm laser light; FQPM coronagraph, Self-coherent camera WF sensing, one deformable mirror

15

THD2 @ Lesia: Results (2/)

Highly achromatic coronagraphs based on phase masks

DZPM coronagraph in visible, Self-coherent camera WF sensing, one deformable mirror

Collaboration : Lam $\Delta \lambda = 30$ nm (5%) $\Delta \lambda = 200$ nm (31%) Galicher et al. 2014 Delorme et al. 2016a 10^{-5} Laser 550-750 > 550-800 🔶 550-850 center $\sim 10^{-3}$ 650-40 $\sim 10^{-8}_{10^{-8}}$ 15 0 5 10 Separation in λ_0/D $\Delta\lambda = 300$ nm (47%) $\Delta \lambda = 250 \text{nm} (39\%)$ raw contrast

THD2 @ Lesia: Results (4/)

Highly achromatic coronagraphs based on phase masks

Туре	Techno	Collaboration	Comment for future			
DZPM	Glass plate	Lam	Need test with smaller IWA	\checkmark	Delorme et al. 2016a	
VVC	Photonic layers	NAOJ	Mitigated results			
EOPM	Photonic layers	Hokkaido Univ.	Mitigated results		Komuro et al. In prep	
VVC	Liquid crystal polymer		Techno is not ready	\checkmark	Baudoz et al, In prep	
SLPM	Glass plate	Shanghai Univ.	In progress		Patru et al. In prep	
Continuous function	Glass plate	Shanghai Univ. / Paris Obs.	In progress			

THD2 @ Lesia: Results (5/)

Achromatization of focal plane WFS

Multi-reference self-coherent camera (MRSCC)

600-680nm light; DZPM coronagraph, 1DM

MRSCC: spatial modulation, not model dependent, one image per correction, proven close-loop at 10Hz

Same performance in monochromatic light and with 12.5 % bandpass (600-680nm) Raphaël Galicher

May, 31th 2017

THD2 @ Lesia: Results (6/)Monochromatic light + 2DMs : amplitude&phase control

700nm laser light; FQPM coronagraph, Self-coherent camera WF sensing, two deformable mirrors

Collaboration : Lagrange 10 Baudoz et al. In prep Contrast (RMS level) 10⁻⁶ 10-7 **10⁻⁸** 20 λ/D 2 6 8 10 Distance in λ/D Full Fov cleaned from speckles

May, 31th 2017

THD2 @ Lesia: Results & Perspectives

Coronagraphic components	Advancement	Collaboration		
Four Quadrant Phase Mask		GEPI, France		
Multi-Four Quadrant PM		GEPI, France		
Apodized Dual Zone PM		LAM, France		
8-Octant Phase Mask	09/2015 =>	Hokkaido Univ., Japan		
Vector Vortex (photonic layers)	09/2015 =>	NAOJ, Japan		
Vector Vortex (Liquid cristal)		Lesia, France		
6-Level Phase Mask	11/2016 =>	Shanghai Univ., China & GEPI, France		
Achromatic Phase Mask	11/2016 =>	Shanghai Univ., China & Lesia, France		
Multi-star coronagraph	2017 =>	Loma/Bordeaux, France		
Wavefront control	Advancement	Collaboration		
Monochromatic & Polychromatic Self- Coherent Camera	√	Lesia, France		
Amplitude & Chromatism correction	12/2015 =>	Lesia, France & Lagrange, France		
Coronograph & Phase diversity (COFFEE algorithm)	01/2016 =>	Onera, France		
Optimization of algorithms, system study	10/2016 =>	SRON, Netherlands		
Stability of a high contrast imager	01/2017 =>	Lesia, France		
Electric field conjugation	2018 (TBC) =>	IPAG, France		
Zolda tochniquo				

Needs For Astrophysics And Needed Studies

Needs for astrophysics

High contrast levels: ~ 1e-10 contrast Large spectral band: >200nm in visible ; >500nm in NIR

Needed studies

Coronagraphs

The French High Contrast Testbench Map

Raphaël Galicher